Quantitative relationship between Kv4.2 mRNA and A-type K+ current in rat striatal cholinergic interneurons during development.

نویسندگان

  • Satoko Hattori
  • Fujio Murakami
  • Wen-Jie Song
چکیده

Channel density is a fundamental factor in determining neuronal firing and is primarily regulated during development through transcriptional and translational regulation. In adult rats, striatal cholinergic interneurons have a prominent A-type current and co-express Kv4.1 and Kv4.2 mRNAs. There is evidence that Kv4.2 plays a primary role in producing the current in adult neurons. The contribution of Kv4.2 and Kv4.1 to the A-type current in cholinergic interneurons during development, however, is not known. Here, using patch-clamp recording and semi-quantitative single-cell reverse transcription-polymerase chain reaction (RT-PCR) techniques, we have examined the postnatal development of A-type current and the expression of Kv4.2 and Kv4.1 in rat striatal cholinergic interneurons. A-type current was detectable at birth, and its amplitude was up-regulated with age, reaching a plateau at about 3 wk after birth. At all ages, the current inactivated with two time constants: one ranging from 15 to 27 ms and the other ranging from 99 to 142 ms. Kv4.2 mRNA was detectable at birth, and the expression level increased exponentially with age, reaching a plateau by 3 wk postnatal. In contrast, Kv4.1 mRNA was not detectable during the first week after birth, and the expression level did not show a clear tendency with age. Taken together, our results suggest that Kv4.2 plays an essential role in producing the A-type current in striatal cholinergic interneurons during the entire course of postnatal development.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Somatodendritic depolarization-activated potassium currents in rat neostriatal cholinergic interneurons are predominantly of the A type and attributable to coexpression of Kv4.2 and Kv4.1 subunits.

Unlike other neostriatal neurons, cholinergic interneurons exhibit spontaneous, low-frequency, repetitive firing. To gain an understanding of the K+ channels regulating this behavior, acutely isolated adult rat cholinergic interneurons were studied using whole-cell voltage-clamp and single-cell reverse transcription-PCR techniques. Cholinergic interneurons were identified by the presence of cho...

متن کامل

Kv4.2 mRNA abundance and A-type K(+) current amplitude are linearly related in basal ganglia and basal forebrain neurons.

A-type K(+) currents are key determinants of repetitive activity and synaptic integration. Although several gene families have been shown to code for A-type channel subunits, recent studies have suggested that Kv4 family channels are the principal contributors to A-type channels in the somatodendritic membrane of mammalian brain neurons. If this hypothesis is correct, there should be a strong c...

متن کامل

Coordinate high-frequency pattern of stimulation and calcium levels control the induction of LTP in striatal cholinergic interneurons.

Current evidence appoints a central role to cholinergic interneurons in modulating striatal function. Recently, a long-term potentiation (LTP) of synaptic transmission has been reported to occur in these neurons. The relationship between the pattern of cortico/thalamostriatal fibers stimulation, the consequent changes in the intracellular calcium concentration ([Ca2+]i), and the induction of sy...

متن کامل

NMDA receptor subunit mRNA expression by projection neurons and interneurons in rat striatum.

N-Methyl-D-aspartate (NMDA) receptors are enriched in the neostriatum and are thought to mediate several actions of glutamate including neuronal excitability, long-term synaptic plasticity, and excitotoxic injury. NMDA receptors are assembled from several subunits (NMDAR1, NMDAR2A-D) encoded by five genes; alternative splicing gives rise to eight isoforms of subunit NMDAR1. We studied the expre...

متن کامل

Striatal cholinergic interneurons express a receptor-insensitive homomeric TASK-3-like background K+ current.

Large aspiny cholinergic interneurons provide the sole source of striatal acetylcholine, a neurotransmitter essential for normal basal ganglia function. Cholinergic interneurons engage in multiple firing patterns that depend on interactions among various voltage-dependent ion channels active at different membrane potentials. Leak conductances, particularly leak K(+) channels, are of primary imp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 90 1  شماره 

صفحات  -

تاریخ انتشار 2003